On Practical Charge Injection at the Metal/Organic Semiconductor Interface

نویسندگان

  • Akichika Kumatani
  • Yun Li
  • Peter Darmawan
  • Takeo Minari
  • Kazuhito Tsukagoshi
چکیده

We have revealed practical charge injection at metal and organic semiconductor interface in organic field effect transistor configurations. We have developed a facile interface structure that consisted of double-layer electrodes in order to investigate the efficiency through contact metal dependence. The metal interlayer with few nanometers thickness between electrode and organic semiconductor drastically reduces the contact resistance at the interface. The improvement has clearly obtained when the interlayer is a metal with lower standard electrode potential of contact metals than large work function of the contact metals. The electrode potential also implies that the most dominant effect on the mechanism at the contact interface is induced by charge transfer. This mechanism represents a step forward towards understanding the fundamental physics of intrinsic charge injection in all organic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Band alignment at metal/organic and metal/oxide/organic interfaces

Charge injection at metal/organic interfaces dictates the performance, lifetime, and stability of organic electronic devices. We demonstrate that interface dipole theory, originally developed to describe Schottky contacts at metal/semiconductor interfaces, can also accurately describe the injection barriers in real organic electronic devices. It is found that theoretically predicted hole inject...

متن کامل

Electrical doping: the impact on interfaces of π-conjugated molecular films

Abstract Organic–metal and organic–organic interfaces play crucial roles in charge injection in, and transport through, organic thin film devices. Their electronic structure, chemical properties and electrical behaviour must be fully characterized and understood if engineering and control of organic devices are to reach the levels attained for inorganic semiconductor devices. Recent fundamental...

متن کامل

Role of the Charge Neutrality Level at Metal/Organic and Organic/Organic Interfaces

This paper describes how the concepts of Charge Neutrality Level (CNL) and Induced Density of Interface States (IDIS) can successfully explain the energy level alignment at metal-organic and organic-organic interfaces. We propose that the CNL acts as an effective Fermi level for the organic semiconductor: its partial alignment with the metal Fermi level (in the case of metal-organic interfaces)...

متن کامل

Switchable Charge Injection Barrier in an Organic Supramolecular Semiconductor.

We disclose a supramolecular material that combines semiconducting and dipolar functionalities. The material consists of a discotic semiconducting carbonyl-bridged triarylamine core, which is surrounded by three dipolar amide groups. In thin films, the material self-organizes in a hexagonal columnar fashion through π-stacking of the molecular core and hydrogen bonding between the amide groups. ...

متن کامل

Role of Thick-Lithium Fluoride Layer in Energy Level Alignment at Organic/Metal Interface: Unifying Effect on High Metallic Work Functions

We have investigated the function of ~3 nm thick lithium fluoride (LiF) buffer layers in combination with high work function metal contacts such as coinage metals and ferromagnetic metals for use in organic electronics and spintronics. The energy level alignment at organic/LiF/metal interfaces is systematically studied using photoelectron spectroscopy and the integer charge transfer model. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013